MATH 1A - HOW TO DERIVE THE FORMULA FOR THE DERIVATIVE OF ARCCOS(X) - WRITE-UP

PEYAM RYAN TABRIZIAN

Please refer to the other handout 'Arccos' for more details! This handout is just about how to write up your solution for the problem below. The other handout gives way more details!

Problem: Show that the derivative of $y=\cos ^{-1}(x)$ is $y^{\prime}=\frac{-1}{\sqrt{1-x^{2}}}$
SOLUTION: Let $y=\cos ^{-1}(x)$, so $\cos (y)=x$, hence, using implicit differentiation:

$$
\begin{aligned}
(\cos (y))^{\prime} & =(x)^{\prime} \\
y^{\prime} \cdot(-\sin (y)) & =1 \\
y^{\prime} & =\frac{-1}{\sin (y)} \\
y^{\prime} & =\frac{-1}{\sin \left(\cos ^{-1}(x)\right)}
\end{aligned}
$$

For the rest, you can EITHER choose the geometric way or the algebraic way (DO NOT do both, it's a complete waste of time!!!)
0.1. Geometric way. Let $\theta=\cos ^{-1}(x)$, so $x=\cos (\theta)=\frac{A C}{B C}$ in the picture below:

1A/Triangle.png

Then $\sin \left(\cos ^{-1}(x)\right)=\sin (\theta)=\frac{A B}{B C}$, but $B C=1$, and, by the Pythagorean theorem:

$$
\begin{aligned}
B C^{2} & =A B^{2}+A C^{2} \\
A B^{2} & =B C^{2}-A C^{2} \\
A B^{2} & =1-x^{2} \\
A B & =\sqrt{1-x^{2}}
\end{aligned}
$$

And now we're done, because: $\sin \left(\cos ^{-1}(x)\right)=\frac{A B}{B C}=A B=\sqrt{1-x^{2}}$, and hence:

$$
y^{\prime}=\frac{-1}{\sin \left(\cos ^{-1}(x)\right)}=\frac{-1}{\sqrt{1-x^{2}}}
$$

0.2. Algebraic way. From $\sin ^{2}(x)+\cos ^{2}(x)=1$, with $\cos ^{-1}(x)$ instead of x, we get:

$$
\begin{aligned}
\sin ^{2}\left(\cos ^{-1}(x)\right)+\cos ^{2}\left(\cos ^{-1}(x)\right) & =1 \\
\sin ^{2}\left(\cos ^{-1}(x)\right)+x^{2} & =1 \\
\sin ^{2}\left(\cos ^{-1}(x)\right) & =1-x^{2} \\
\sin \left(\cos ^{-1}(x)\right)= \pm \sqrt{1-x^{2}} &
\end{aligned}
$$

Now $\cos ^{-1}(x)$ has range $[0, \pi]$, so $\sin \left(\cos ^{-1}(x)\right) \geq 0$ it follows that $\sin \left(\cos ^{-1}(x)\right)=$ $\sqrt{1-x^{2}}$.

So, we get:

$$
y^{\prime}=\frac{-1}{\sin \left(\cos ^{-1}(x)\right)}=\frac{-1}{\sqrt{1-x^{2}}}
$$

